585 research outputs found

    Comparison of two rocuronium bromide doses in adult and elderly patients who underwent laparoscopic surgery

    Get PDF
    Background The aim of our study was to evaluate the effects of two different doses of rocuronium bromide (0.5 mg/kg and 0.9 mg/kg) on the length of neuromuscular block, on the haemodynamic stability and on the side effects in patients of different ages. Methods We recruited 80 patients who underwent laparoscopic surgery (cholecystectomy, appendicectomy, varicocelectomy) belonging to ASA I–II classes and divided them into four groups:• 20 adults (A0.5) who received rocuronium bromide 0.5 mg/kg• 20 elderly patients (E0.5) who received rocuronium bromide 0.5 mg/kg• 20 adults (A0.9) who received rocuronium bromide 0.9 mg/kg• 20 elderly patients (E0.9) who received rocuronium bromide 0.9 mg/kgIntubation conditions, continuous monitoring of HR, NIBP, SpO2, EtCO2 were recorded. Onset time, REC 25%, TOF-ratio 0.70 were analysed by TOF-WATCH.Nerve-evoked muscle tension and neuromuscular paralysis extension were expressed by strength of contraction of adductor pollicis, in response to a direct stimulation of the ulnar nerve (TOF). Results The results showed that in elderly patients the effect of rocuronium bromide, at two different doses, was similar. Significant differences regarding the onset time was found among the groups showing that with the same dose of rocuronium bromide, the onset time was prolonged in elderly patients compared to adult patients. Moreover, increasing the dose, the onset time was reduced in both groups (p < 0.05). Forty per cent of adult group A0.5 showed excellent intubation conditions versus 60% of A0.9 (p < 0.05); elderly patients did not show any significant difference in the intubation procedure after different doses of rocuronium bromide.ConclusionsThe results from the four groups showed that in elderly patients 0.5 mg/kg of rocuronium bromide resulted in a good recovery, while 0.9 mg/kg increased the recovery time. Moreover, in adults the high dose was more effective because it reduced the number of injections and post-operative recovery time

    Un-biodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications

    Get PDF
    Nowadays, microplastics represent emergent pollutants in terrestrial ecosystems that exert impacts on soil properties, affecting key soil ecological functions. In agroecosystems, plastic mulching is one of the main sources of plastic residues in soils. The present research aimed to evaluate the effects of two types of plastic sheets (un-biodegradable and biodegradable) on soil abiotic (pH, water content, concentrations of organic and total carbon, and total nitrogen) and biotic (respiration, and activities of hydrolase, dehydrogenase, β-glucosidase and urease) properties, and on phytotoxicity (germination index of Sorghum saccharatum L. and Lepidium sativum L.). Results revealed that soil properties were mostly affected by exposure time to plastics rather than the kind (un-biodegradable and biodegradable) of plastics. After six months since mesocosm setting up, the presence of un-biodegradable plastic sheets significantly decreased soil pH, respiration and dehydrogenase activity and increased total and organic carbon concentrations, and toxicity highlighted by S. saccharatum L. Instead, the presence of biodegradable plastic sheets significantly decreased dehydrogenase activity and increased organic carbon concentrations. An overall temporal improvement of the investigated properties in soils covered by biodegradable plastic sheets occurred

    Decomposition and temperature sensitivity of fine root and leaf litter of 43 mediterranean species

    Get PDF
    Aims: Data on the decomposition of fine roots are scarce for the Mediterranean basin. This work aims to compare chemical traits, decomposition rate, and temperature sensitivity (Q10) for root and leaf litter of 43 Mediterranean species. Methods: We carried out a two-years litterbag decomposition experiment using 43 fine roots litter and leaf litter types incubated in laboratory conditions at three different temperatures, i.e. 4 °C, 14 °C, and 24 °C. Litter was characterized for carbon (C), nitrogen (N), lignin and cellulose concentration, C/N, and lignin/N ratios. Results: Fine root litter had lower N content but higher lignin concentration, lignin/N, and C/N ratios compared to leaf litter. The decay rate of fine root litter was slower than leaf litter. For both tissues, the decay rate was negatively associated with lignin concentration, lignin/N, and C/N ratios but positively with N concentration. Q10 was higher for fine root than leaf litter, with a positive correlation with lignin while negative with N concentration. Conclusions: Our findings demonstrate a higher Q10 accompanied by a slower decomposition rate of fine root litter compared to leaf litter in Mediterranean ecosystems. These results must be considered in modeling organic C at the ecosystem scale

    Heavy metal bioaccumulation by the important food plant, olea europaea L., in an ancient metalliferous polluted area of Cyprus

    Get PDF
    Aspects of the bioaccumulation of heavy metals are reviewed and possible evidence of homeostasis is highlighted. Examination and analysis of olive (Olea europaea L.) trees growing in close proximity to a copper dominated spoil tip dating from at least 2000 years BP, on the island of Cyprus, revealed both bioaccumulation and partitioning of copper, lead and zinc in various parts of the tree. A factor to quantify the degree of accumulation is illustrated and a possible seed protective mechanism suggested

    Genotoxicity assessment of three nutraceuticals containing natural antioxidants extracted from agri-food waste biomasses

    Get PDF
    Grapes and apples are the most cultivated fruits in the Mediterranean basin and their agricultural processing is responsible for the production of a large amount of bio-waste. The reuse of this food biomass would increase the volume of recyclable/renewable biomaterial and lower the environmental impact due to the increasing demand for these biological products. To this purpose, agri-food waste from grape and apple processing have become an important source of phytochemicals, and many pharmaceutical industries are using it as starting material to produce dietary supplements, functional foods, and food additives for human consumption. In virtue of the chemical diversity and complexity of agri-food biowaste, developers and producers of nutraceuticals are advised to assess the safety of their final nutraceutical products, in compliance with European Food Safety Authority regulation. Here, we use the Ames test to assess the mutagenicity of three nutraceuticals obtained from agri-food waste biomasses: Taurisolo® from grape pomace of Vitis vinifera L. cv 'Aglianico', AnnurComplex® from Malus pumila M. cv 'Annurca' and Limoncella Apple Extract from Malus domestica B. cv 'Limoncella'. The results showed that all three nutraceuticals were non-mutagenic

    Metric entropy in linear inverse scattering

    Get PDF
    The role of multiple views and/or multiple frequencies on the achievable performance in linear inverse scattering problems is addressed. To this end, the impact of views and frequencies on the Kolmogorov entropy measure is studied. This way the metric information that can be conveyed back from data to the unknown can be estimated. For the sake of simplicity, the study deals with strip scatterers and the cases of discrete angles of incidence and/or frequencies.&nbsp

    Cardioprotective Effects of Taurisolo® in Cardiomyoblast H9c2 Cells under High-Glucose and Trimethylamine N-Oxide Treatment via de Novo Sphingolipid Synthesis

    Get PDF
    In addition to high plasma glucose, increased levels of trimethylamine N-oxide (TMAO) have been found in obese subjects, where are considered as a novel risk factor for cardiovascular diseases. The present study aimed to investigate the effect of a novel nutraceutical formulation based on grape polyphenols (registered as Taurisolo®) in counteracting TMAO- and high glucose (HG)-induced cytotoxicity in cardiomyoblast H9c2 cells. Cell damage was induced with HG (HG-H9c2) and HG+TMAO (THG-H9c2); both experimental cell models were, thus, incubated for 72 h in the presence or absence of Taurisolo®. It was observed that Taurisolo® significantly increased the cell viability and reduced lactate dehydrogenase and aspartate transaminase release in both HG- and THG-H9c2 cells. Additionally, through its antioxidant activity, Taurisolo® modulated cell proliferation via ERK activation in THG-H9c2. Furthermore, Taurisolo® was able to induce autophagic process via increasing the expression of LC3II, a protein marker involved in formation of autophagosome and ex novo synthesis of sphingomyelin, ceramides, and their metabolites both in HG- and THG-H9c2 cells. Finally, Taurisolo® reduced hypertrophy and induced differentiation of HG-H9C2 cells into cardiomyocyte-like cells. These data suggest that Taurisolo® counteracts the toxicity induced by TMAO and HG concentrations increasing autophagic process and activating de novo sphingolipid synthesis, resulting in a morphological cell remodeling. In conclusion, our results allow speculating that Taurisolo®, combined with energy restriction, may represent a useful nutraceutical approach for prevention of cardiomyopathy in obese subjects

    A framework to identify structured behavioral patterns within rodent spatial trajectories

    Get PDF
    Animal behavior is highly structured. Yet, structured behavioral patterns—or “statistical ethograms”—are not immediately apparent from the full spatiotemporal data that behavioral scientists usually collect. Here, we introduce a framework to quantitatively characterize rodent behavior during spatial (e.g., maze) navigation, in terms of movement building blocks or motor primitives. The hypothesis that we pursue is that rodent behavior is characterized by a small number of motor primitives, which are combined over time to produce open-ended movements. We assume motor primitives to be organized in terms of two sparsity principles: each movement is controlled using a limited subset of motor primitives (sparse superposition) and each primitive is active only for time-limited, time-contiguous portions of movements (sparse activity). We formalize this hypothesis using a sparse dictionary learning method, which we use to extract motor primitives from rodent position and velocity data collected during spatial navigation, and successively to reconstruct past trajectories and predict novel ones. Three main results validate our approach. First, rodent behavioral trajectories are robustly reconstructed from incomplete data, performing better than approaches based on standard dimensionality reduction methods, such as principal component analysis, or single sparsity. Second, the motor primitives extracted during one experimental session generalize and afford the accurate reconstruction of rodent behavior across successive experimental sessions in the same or in modified mazes. Third, in our approach the number of motor primitives associated with each maze correlates with independent measures of maze complexity, hence showing that our formalism is sensitive to essential aspects of task structure. The framework introduced here can be used by behavioral scientists and neuroscientists as an aid for behavioral and neural data analysis. Indeed, the extracted motor primitives enable the quantitative characterization of the complexity and similarity between different mazes and behavioral patterns across multiple trials (i.e., habit formation). We provide example uses of this computational framework, showing how it can be used to identify behavioural effects of maze complexity, analyze stereotyped behavior, classify behavioral choices and predict place and grid cell displacement in novel environments
    corecore